Human Simulation and the Deep Learning of Neuromuscular and Sensorimotor Control

# Demetri Terzopoulos

Distinguished Professor and Chancellor's Professor of Computer Science, UCLA UCLA Computer Graphics & Vision Laboratory and VoxelCloud, Inc.

### Virtual Humans in the Movies

#### These characters are neither autonomous nor intelligent



"Final Fantasy: The Spirits Within" (Square Pictures, Inc., 2001)

"Beowulf" (Paramount/Warner Bros., Inc., 2007)

### Human Characters in Interactive Games



# Motion Capture Technology

#### 3D tracking of body-attached IR reflectors



# Simplistic Biomechanical Models

### Articulated anthropomorphic figures

Physical properties consistent with fully-fleshed humans



# Physics-Based Whole-Body Simulation

#### The virtual stuntman



[Faloutsos, van de Panne, Terzopoulos 2001]

### **Pose Controllers**

### Example: Sit / Stand





# Falling Backward, Rolling Over, Rising, and Balancing in Gravity



Help, I've fallen! ... and I <u>can</u> get up!

# 20 Years of Facial Modeling

#### Parke & Williams, 1981 Square USA, 2001





#### **Real-Time Biomechanical Facial Simulation**



[Lee, Waters, Terzopoulos 1995]

#### Soft Tissue Simulation

#### Surgery simulation

[Sifakis et al. 2009]



### A Comprehensive, Realistic Biomechanical Musculoskeletal Model of the Human Body

- Almost all the articular bones and skeletal muscles
  - 75 bones (165 DOFs), 846 muscles
- Volumetric finite element soft tissue model
  - 354K tetrahedral elements



[Lee, Sifakis, ⊤Terzopoulos 2009]



### The Skeletal Model



# Skeletal Forward Dynamics



#### Muscles

#### Components of the hierarchical muscle structural system





# Hill Muscle Model



#### Physiologist Archibald V. Hill (1886-1977)

- 1922 Nobel Prize in Physiology or Medicine for elucidation of mechanical work produced in muscles
- Uniaxial model
  - CE: Contractile Element
  - SE: Series Element
  - PE: Parallel Element



- CE driven by activation signal a(t)

### The Biomechanical Musculoskeletal Model



### The Biomechanical Musculoskeletal Model



# Posterior Muscles in the Deep Layers

Modeling all the major muscles participating in spinal posture





# Upper Body Musculature







### Piecewise Line Segment Hill-Type Muscle Model





### The Musculoskeletal Model



### The Musculoskeletal Model



### **3D Muscle Geometries**



# Skinned Biomechanical Human Model



#### Creating the Soft Tissue Simulation Mesh



# Finite Element Soft Tissue Model

- Decoupling visualization geometry and simulation geometry
- 354K tetrahedral finite element simulation



# The Biomechanical Human Musculoskeletal Model



# Biomechanical Simulation With Inverse Dynamics Control



# Biomechanical Simulation With Inverse Dynamics Control



# Biomechanical Simulation With Inverse Dynamics Control



### Stiffness Control

#### Co-activation of opposing muscles



Zero co-contraction

High co-contraction

# Realistic Animation of Swimming

Biomechanical human model immersed in simulated fluid



### **Realistic Simulation & Control of Human Swimming**

#### Comprehensive biomechanical body model

- Almost all the articular bones and skeletal muscles
  - 75 bones (165 DOFs), 846 muscles
- Volumetric soft tissue model
  - 354K tetrahedral finite elements

#### In a Navier-Stokes simulated fluid

#### Biomimetic muscle actuator control

 Central Pattern Generator (CPG) muscle control to generate multiple swimming modes

# The Virtual Human Swimmer


# Close-up View of the Biomechanical Swimmer Model



# Swimming Comparison

#### Freestyle Swimming



# Speed and Style Transitions



#### **Multi-Physics Simulation**

# Force-coupled, interleaved time-integration across three specialized simulators

- Rigid/articulated body simulation bones/skeleton
  - Articulated multi-body method
- Deformable solid body simulation flesh
  - Lagrangian finite element quasi-incompressible elasticity
- Fluid simulation water
  - Eulerian fluid simulation with particle level-set method

#### Layered Simulation Components



### Non-Locomotional, Task-Oriented Musculoskeletal Control

The principled and only viable approach is learning-based neuromuscular control

- Similar to how the human brain does it
- Let's first consider the cervicocephalic neuromuscular complex
  - i.e., the muscles and bones of the neck/head subsystem

#### Anatomical Structure of the Neck



#### Skeletal Model



- 7 cervical vertebrae and a skull coupled by 3-DOF joints
- Ligaments/disks-> passive joint springs
- Equations of motion



### **Biomechanical Neck Model**

#### [Lee, Terzopoulos 2006]



Total of 72 anatomically-based muscle actuators in 3 layers 48 deep muscles (16 longus colli, 16 erector, 16 rotator) 6 muscles at each joint increase controllability 12 intermediate muscles (scalerius: 4 anterior, 4 posterior, 4 capitis) 12 superficial muscles (2 sternomastoid, 2 cleidooccipital, 8 trapezius) The challenge was co-actuation and control

#### What Would Leonardo da Vinci Think of This?



#### Neck-Head-Face Animation



#### Stiffness Control by Muscle Co-Contraction



#### Stiffness Control



#### Stiffness Control



#### Biomechanical Simulation of the Neck-Head-Face Complex

#### Neuromusculoskeletal model



#### (Shallow) Artificial Neural Networks

#### Networks of simple computing elements



Neuron Feedforward Network

# Training the Neural Networks

Set random target pose



#### Training the Neural Networks

- Using inverse kinematics, compute desired joint angles
- Using inverse dynamics, compute muscle activations to achieve desired joint angles (under gravity)



# Training the Neural Networks

Repeat with about 20K random target poses



Trained Networks Perform Nonlinear Regression Target Pose

### Neck-Head-Face-Eye Behavior



#### Autonomous Multi-Head Behavioral Interaction



# Varying Shoulder Orientation



# Deep Learning of Neuromuscular Control

#### Neuromuscular controller architecture

[Nakada, Terzopoulos 2015]

Stacked autoencoders



# Robust Deep Neuromuscular Control



# Deep Learning of **Biomimetic Sensorimotor Control**

#### Perception subsystem

- Eyes capable of eye movements
- Retinas with foveated photoreceptor distributions
- Perception using 10 deep neural networks (DNNs)

#### Motor subsystem

- **12** DNN neuromuscular controllers
  - Ocular complex (6 extraocular muscles)
  - Cervicocephalic complex (216 neck muscles)
  - Torso complex (443 muscles)
  - 4 limbs (arms: 29 muscles legs: 39 muscles)





#### System Overview



Environment

#### Muscle-Actuated Dynamic Control



[Nakada, Zhou, Weiss, Terzopoulos 201<u>8]</u>

#### **B**eactivate muscles

#### **B**eactivate muscles



### Neuromuscular Motor Controller Architecture



#### **Reflex Controller DNNs**

#### Fully-connected DNN architecture



#### Cervicocephalic Voluntary Controller DNN

#### Fully-connected DNN architecture



# Limb Voluntary Controller DNN

#### Fully-connected DNN architecture



# Offline Training Data Synthesis



#### Untrained Neuromuscular Controllers

# Musculoskeletal model with immobilized pelvis and thoracic+lumbar spine



## Progress of the Offline Training Process (for the Left Arm)



# After 900 Training Epochs


### Torso Calisthenics



## Sit-to-Stand Motor Controller Training Process



### **Trained Sit-to-Stand Motor Controller**



## Golf Putting



### Stepping Voluntary Controller





### **Biomimetic Vision**

#### The Eye and its Retina



Fig. 1.1. A drawing of a section through the human eye with a schematic enlargement of the retina.



### **Retinal Photoreceptor Distribution**



### Photoreceptor Distribution Model

#### Noisy log-polar (spiral) distribution









P = 3,600

Photoreceptors

#### **Right Retina**



### Raytracing into the 3D Environment to Compute Irradiance at the Photoreceptors





### Perception Controller DNNs

### Foveation DNN

- Optical Nerve Vector (ONV) input
- Eye rotation angles output
- Fully-connected
  6-layer DNN



### Learned Foveation Control











#### Half Speed





#### Half Speed







### Robustness of the Trained Controllers



### **Biomechanics of the Eye**

#### Six extraocular eye muscles





### A Detailed Eye Model

#### Muscles, cornea, iris, and lens







### Photoreceptor Irradiance Computation

#### Raytracing the ocular organs

- Cornea refracts light rays
- Iris and finite-aperture pupil
- Deformable lens refracts rays





### Biomimetic Eye Modeling and Oculomotor Control

Biomimetic Eye Modeling & Deep Neuromuscular Oculomotor Control

> SIGGRAPH Asia '19 Technical Paper Submission #347

### Locally-Connected Irregular Network (liNet)



### Oculomotor Control System

### Architecture (per eye)

- 1 vision DNN (foveation, smooth pursuit)
- 1 motor DNN (eye movements)
- 1 iris control SNN (luminance accommodation)
- 1 lens control SNN (focal accommodation)



### Neuromuscular Motor Control DNN for the Extraocular Muscles (Eye Movements)

Recurrent, 6-layer, fully-connected  $\Delta \theta$  $a_1$  $\Delta a_1$  $a_1$  $\Delta a_{i}$  $a_6$ 300 300 300 300 300 300

### Neuromuscular Motor Control SNN for the Intraocular Muscles (Iris Sphincter)

Recurrent, 2-layer, fully-connected



## Current Sensorimotor System

### Architecture

- 24 DNNs
- 4 SNNs



### A Higher-Level Vision System

#### Sketch analysis / synthesis with a recurrent NN model

- Modified "Sketch-RNN"
  - Encoder inputs: retinal photoreceptors
  - Decoder outputs:
    "pen" strokes



### Sensorimotor Control: Sketching



### Acknowledgements

#### My students whose work was presented

#### PhD Students:

| Sung-Hee Lee  | (KAIST)    |
|---------------|------------|
| Justin Si     | (Facebook) |
| Masaki Nakada | (NeuralX)  |
| Tao Zhou      | (UCLA)     |

#### MS students:

Arjun Laksmipathy (CMU) Yuenchen Lee (Monestary) BS student:

Eftychios Sifakis (U Wisconsin)

Honglin Chen (Stanford) **Postdoc:** 

- human body modeling and cervicocephalic control learning
- swimming simulation and CPG control
- deep learning of neuromuscular and sensorimotor control
- deep learning of neuromuscular torso control
- biomechanical eye modeling and neuromuscular control
- facial modeling and animation
- liNets and biomimetic perceptual modeling
- body soft tissue simulation and surgery simulation

Funding from Guggenheim Foundation, UCLA, NYU, and VoxelCloud, Inc.

# Thank You !

Terzopoulos.com



